Flexible, Reliable Software — Anno 2020

Introduction

The book Flexible, Reliable Software celebrates its tenth anniversary in 2020. Looking back, I am
happy to say that all core contents of the book is still valid: the principles, the techniques, the
patterns — they are all just as sound and useful today as they were in 2010.

However, the technological platforms on which we develop software is in constant flux, and over
the years I have each year updated the provided codebase, scripts, and advice, to keep the core
exercises, projects, and example code more in line with state-of-the-art development environments,
and advances in the Java language and its libraries.

Ideally the book should have followed along and been constantly updated. However, a printed
book (for all its merits) is not ideal for that purpose.

Therefore, have decided to write this document that provides a “delta’ to figures and references in
the book. It is a bit tedious, I agree, as you have to have this document open while reading the
book. But - read the introduction of each ‘delta chapter’ in this document before reading the
book’s chapter, and then cross reference once you stumble into ‘old stuft’ in the book.

Summer 2020 — Henrik Baerbak Christensen

Chapter 2 — Reliability and Testing

This chapter is about terminology, and nothing has changed there. However, JUnit and the way
we use it, has changed since 2010.

Automated Testing tools have grown in numbers and features since 2010. However, I will stick to
JUnit, but use it in version 5, and utilize the ‘hamcrest” matcher library, instead of the
‘assertEqual()” method that is used throughout the FRS book.

Hamcrest matchers provide two benefits

e Ituses a’‘fluent API" way of expressing test cases that makes them almost readable directly.
e The output generated in the IDE in case a test case fails is more specific about what went
wrong.

Changing to JUnit 5 and Hamcrest means new libraries to include in the Java classpath as well as
new imports in your Java code. Please refer to Chapter 5 below for these details.

2.4 JUnit: An Automated Test Tool

The modern version of the TestDayOfWeek test case, using modern Java date classes and the
Hamcrest matchers would look like:

public void shouvldGiveSaturdayFor2sDec2@la() {
LocalDate date = LocalDate.of(year: 2018, month: 12, dayOfMonth: 25);
assertThat(date.getDay0fWeek(), is(Day0fWeek.SATURDAY]));

+

The main thing to highlight is the assertThat which takes two parameters: The first is the computed
value, and the next is a matcher expression that is designed to be just about readable English: “Assert
that date.getDayOfWeek() is Saturday.”

Sidebar 2.2’s long list of Junit 4.4 assert methods can then be rephrased using the Hamcrest
matchers like this

public woid shouldDemoSidebar2_2() {

assertThat(actual: true, is(value: truel);

assertThat(actual null, is(nullvalve()));

assertThat(actual: "fish", is(not(nullValue(})}));

assertThat(actoal: "fish", is(value: "fish"));

assertThat(actual: 7.123, closeTol(operand: 7.124, error: 8.885));
gssertThat(actual: "This is a fish", containsString(substring: "fish"));

List<S5tring> 1 = Arrays.aslist("Bimse", "Bumse");
assertThat(1l, hasItem("Bimse"));

assertThat(l, not(hasItem("Fish"}})};
assertThat (1, hasItems("Bumse", "Bimse"));

}

The lower half of the code above shows some handy additional matchers provided, making it easy
to test substrings (‘containsString()’) and if items are in an array (‘hasltem’).

Sidebar 2.3 explains using JUnit in the raw java compiler. Nowadays we always run code using
some build management system, like Gradle, or an integrated development environment, like
Intelli].

Chapter 5-TDD

The TDD principles and processes (‘the rhythm’) is the same, the changes are in the JUnit tooling,
so below each iteration of the book is updated with figures from a modern JUnit 5 and Hamcrest
tool stack.

5.3 — Iteration 1: Inserting Five Cents

Using JUnit 5 and the Hamcrest matchers, the first iteration’s test code will look like

package paystation.domain;

import org.junit.jupiter.s

import static org.hamcre
import tic org.hamcre

import

p; addPa;mﬂntig}
assertThat(ps.readDisplay(), is(2));
}

Sidebar 5.1. The updated pay station code will use Gradle as build management system. Gradle
will download the proper libraries (JUnit and Hamcrest) as well as compile and execute. To run
the above test case, you would issue ‘gradle test’:

Station = shouldDisplay2MinFor5Cent
1. Llang.AssertionError at TestPaySta f ion.java:18

test completed, failed

Gradle does not provide any detailed information about why a test case failed, but instead
generates a HTML report that can be browsed.

Test results - TestPayStation

Test results - TestPayStation x | +

— & (i) file:y//fhome/csdev/proj/frsproject/frs-2020/src/tdd-iteration-2/buil
shouldDisplay2MinFor5Cents()

java.lang.AssertionError:
Expected: is =2>
but: was <0=
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert. java:20)
at org.hamcrest.MatcherAssert.assertThat{MatcherAssert.java:6)

Normally, you would rather develop in e.g. Intelli], and run the test cases within that environment.

You will find the project on www.baerbak.com, on the dedicated link for the 2020 version of the
FRS book.

5.4 - Iteration 2: Rate Calculation

The new test case:

1uﬂl1p1aM1HH1nFnr# WCents()

ddPuymﬂnti
ﬂl‘ﬁftT]dtiﬂ:,rpﬂdﬂljplayi} is(18));

The refactoring step is actually different, because JUnit 5 has decided to rename the @Before
annotation to @BeforeEach. While I find that quite annoying after having used @Before for more
than ten years, it is actually a better name as it clearly states that you run the @BeforeEach method
‘before each test method’.

public voic
ps = new Pay itionImpl();

Dubill void s Jis ;#11nFﬂr=Lunt [}
throws I11 : -

ps.addPayment (J}-
assertlThat(ps.readDisplay(),

publlr
throws 11
pPs. dddPnymunt
assertThat(ps

There are also a @BeforeAll method which is run once before calling any methods in the test file.

5.5 — Iteration 3: Illegal Coins

JUnit 5 discontinues the way to express catching exceptions known from JUnit 4, and replace it
with a assert Throws static method. It takes two parameters: the exception to expect, and a lambda
function.

As the method returns the thrown exception, it also allows to verify the contents of the exception.
So, our test case becomes:

@lest
ﬁuh?ic void Lhnuldpﬁ]“ltIllEﬂa1l?Lﬂﬂt[nlﬂf} {

E

O "'||—l|_;.-:|.—lr| 1on =

aEEﬂrtTthW5f lledlLu nException.class,

() -> ps.addPayment(17));
assertThat(theException.getMessage(),
containsString("Invalid

5.6 — 5.11 — The following iterations

The following iterations does not introduce any aspect, that is not already covered by the
techniques above — it is just standard test-driven development.

Chapter 6 — Build Management

Build management systems today generally follows the by convention paradigm, whereas Ant
described in the FRS book follows the by configuration paradigm. The latter paradigm is similar to a
programming language, in which you define what to do. Like making a build-src target that defines
what to do: call the javac compiler.

In later years, I have switched to Gradle which instead relies on conventions on how your code is
organized, and then by itself provides all the common household tasks associated with software
development: compiling code, generate JavaDoc, and running test cases.

The benefit of Gradle compared to Ant is that your build description is much smaller, as you
normally do not define targets and procedures. The liability is that you need to understand the
conventions used, otherwise really nothing works, and you need to known the built-in targets.

Another big advantage of Gradle is built-in dependency management, that is, Gradle can be told
which Java libraries to include in the classpath when compiling and running — these are then
automatically downloaded from maven repository (https://mvnrepository.com/).

Thus, it makes little sense to TDD a build description for Gradle, as I do in the FRS book, as
everything is declarative in the file.

Source code folder layout

Gradle assumes a standard layout of your folders containing production- and test code, similar to
this:

-
v [l src
b i main
W i java
W i paystation
W i domain

<MNo sub folders>

e i test
“ i java
e i paystation

~ @l domain

=Mo sub folders=

The root folder (here tdd-iteration-1) must contain the build description in a file named
build.gradle.

If you compare it to §6.3.8 and figure 6.1 in FRS, it is not that different, except gradle support
multiple languages, so any Java production source code must reside in src/main/javal(packagename)
while test code in src/test/javal(packagename).

Build.gradle
A build.gradle file for the PayStation (which works with Gradle 6.5) is shown below

apply plugin: 'java'

repositories {
jcenter()
}

dependencies {
// Depend on JUnit 5. Require both API and Engine
testimplementation group: 'org.junit.jupiter’,
name: 'junit-jupiter-api', wversion: '5.6.2'
testRuntimeOnly group: 'org.junit.jupiter’
name: 'junit-jupiter-engine', version:

// Use the Hamcrest matcher library
testCompile group: ‘org.hamcrest’,
name: 'hamcrest-library’', version:

Basically, it just states declaratively that this build description is for Java, that it shall pull libraries
from the JCenter repository, and that the source code depends upon three libraries, two for JUnit 5,
and one for Hamcrest. You find the exact text to paste into the “dependencies’ section of the
build.gradle by searching for libraries at mvnrepository.com. For instance, if you want to include
the Unirest Java library, which allows HTTP calls to webservers, I would search for it:

MW} 1250!1'0&\' | unirest i

Repository Found 19 results
Central 17
Sort: relevance | popular | newest
® | Sonatype &
Spring Lib M 5 1. Unirest Java 35
Spring Plugins 2 g com.mashape.unirest » unirest-java
& OneBusAway Pub 1 simplified, lightweight HTTP client library
Group Last Release on Mar 31, 2016

I then choose which version of the library I want, which provides the details needed:

Home » com.mashape.unirest » unirest-java » 1.4.9

Unirest Java » 1.4.9
f" Simplified, lightweight HTTP client library

License
Categories HTTP Clients

HomePage http:/funirest.io/

Date (Mar 31, 20186)

Files pom (3 KB) | jar (43 KB) | View all
Repositories
Used By 353 artifacts

Maven Gradle || SBT || Ivy || Grape || Leiningen || Buildr |

compile group: "com.mashape.unirest', name: "unirest-java', veraicn: '1.4.9!

Gradle targets

Gradle knows how to compile and test Java programs using standard targets. In daily
development I almost exclusively do test-driven development, so the command issued again and
again is: gradle test.

However, you can get the full (and very long) list of targets by invoking gradle tasks.

> Task :tasks

Documentation tasks

[Help tasks

Integration into Intelli]

Intelli] is a powerful integrated development environment, which understands Gradle out of the
box. To open your project in Intelli], just ask it to open the root folder of your gradle project.

- Open File or Project - O X

i A O [S & Hide path

1 'home/csdev/projffrsprojectifrs-2020/src/tdd-iteration-1 | &

g fractal
frs-2020
src
chapter2
» [ig tdd-iteration-2
' tdd-iteration-3

Next, Intelli] will spend some time importing your project. After than you can run the test cases
from within Intelli].

| El Project « £ = 1 — @ TestPayStationjava

¥ g tdd-iteration-1 ~/proj/frsproject/frs-2020/src/tdd-iteration-1 i package paystation.domain
> Bm .gradle z
+ I .idea 3 import
= Bm build
» B gradle 1§ [J#+#% Testcases for the Pay
* W out i1 & | public class TestPayStati
¥ Bmsrc 14
v g main 13 @Test
b java 14 & public void shouldDispl
v [test 15 throws IllegalCoinE
¥ [java 1 PayStation ps = new P
¥ [paystation.domain ps.addPayment(coinVal
&' TestPayStation 15 assertThat(ps.readDis
i .gitignore 15 1
& build.gradie 26 1
E gradiew 21
2 gradiew.bat
+ 1l External Libraries

" Scratches and Consoles

Run: TestPayStation.shouldDisplay2MinFor...
@ 121 = = (R S 18 S E i - « Tests passed: 1 of 1 test - 64 ms

' Test Results 6dms fusrfiib/jvm/java-1.11.68-cpenjdk-amdés/
o ¥ « TestPayStation 64 ms

+" shouldDisplay2MinForsSCents() 64 ms

