
Flexible, Reliable Software – Anno 2020
Introduction
The book Flexible, Reliable Software celebrates its tenth anniversary in 2020. Looking back, I am
happy to say that all core contents of the book is still valid: the principles, the techniques, the
patterns – they are all just as sound and useful today as they were in 2010.

However, the technological platforms on which we develop software is in constant flux, and over
the years I have each year updated the provided codebase, scripts, and advice, to keep the core
exercises, projects, and example code more in line with state-of-the-art development environments,
and advances in the Java language and its libraries.

Ideally the book should have followed along and been constantly updated. However, a printed
book (for all its merits) is not ideal for that purpose.

Therefore, I have decided to write this document that provides a ‘delta’ to figures and references in
the book. It is a bit tedious, I agree, as you have to have this document open while reading the
book. But – read the introduction of each ‘delta chapter’ in this document before reading the
book’s chapter, and then cross reference once you stumble into ‘old stuff’ in the book.

Summer 2020 – Henrik Bærbak Christensen

Chapter 2 – Reliability and Testing
This chapter is about terminology, and nothing has changed there. However, JUnit and the way
we use it, has changed since 2010.

Automated Testing tools have grown in numbers and features since 2010. However, I will stick to
JUnit, but use it in version 5, and utilize the ‘hamcrest’ matcher library, instead of the
‘assertEqual()’ method that is used throughout the FRS book.

Hamcrest matchers provide two benefits

 It uses a ‘fluent API’ way of expressing test cases that makes them almost readable directly.
 The output generated in the IDE in case a test case fails is more specific about what went

wrong.

Changing to JUnit 5 and Hamcrest means new libraries to include in the Java classpath as well as
new imports in your Java code. Please refer to Chapter 5 below for these details.

2.4 JUnit: An Automated Test Tool
The modern version of the TestDayOfWeek test case, using modern Java date classes and the
Hamcrest matchers would look like:

The main thing to highlight is the assertThat which takes two parameters: The first is the computed
value, and the next is a matcher expression that is designed to be just about readable English: “Assert
that date.getDayOfWeek() is Saturday.”

Sidebar 2.2’s long list of Junit 4.4 assert methods can then be rephrased using the Hamcrest
matchers like this

The lower half of the code above shows some handy additional matchers provided, making it easy
to test substrings (‘containsString()’) and if items are in an array (‘hasItem’).

Sidebar 2.3 explains using JUnit in the raw java compiler. Nowadays we always run code using
some build management system, like Gradle, or an integrated development environment, like
IntelliJ.

Chapter 5 – TDD
The TDD principles and processes (‘the rhythm’) is the same, the changes are in the JUnit tooling,
so below each iteration of the book is updated with figures from a modern JUnit 5 and Hamcrest
tool stack.

5.3 – Iteration 1: Inserting Five Cents
Using JUnit 5 and the Hamcrest matchers, the first iteration’s test code will look like

Sidebar 5.1. The updated pay station code will use Gradle as build management system. Gradle
will download the proper libraries (JUnit and Hamcrest) as well as compile and execute. To run
the above test case, you would issue ‘gradle test’:

Gradle does not provide any detailed information about why a test case failed, but instead
generates a HTML report that can be browsed.

Normally, you would rather develop in e.g. IntelliJ, and run the test cases within that environment.

You will find the project on www.baerbak.com, on the dedicated link for the 2020 version of the
FRS book.

5.4 - Iteration 2: Rate Calculation
The new test case:

The refactoring step is actually different, because JUnit 5 has decided to rename the @Before
annotation to @BeforeEach. While I find that quite annoying after having used @Before for more
than ten years, it is actually a better name as it clearly states that you run the @BeforeEach method
‘before each test method’.

There are also a @BeforeAll method which is run once before calling any methods in the test file.

5.5 – Iteration 3: Illegal Coins
JUnit 5 discontinues the way to express catching exceptions known from JUnit 4, and replace it
with a assertThrows static method. It takes two parameters: the exception to expect, and a lambda
function.

As the method returns the thrown exception, it also allows to verify the contents of the exception.
So, our test case becomes:

5.6 – 5.11 – The following iterations
The following iterations does not introduce any aspect, that is not already covered by the
techniques above – it is just standard test-driven development.

Chapter 6 – Build Management
Build management systems today generally follows the by convention paradigm, whereas Ant
described in the FRS book follows the by configuration paradigm. The latter paradigm is similar to a
programming language, in which you define what to do. Like making a build-src target that defines
what to do: call the javac compiler.

In later years, I have switched to Gradle which instead relies on conventions on how your code is
organized, and then by itself provides all the common household tasks associated with software
development: compiling code, generate JavaDoc, and running test cases.

The benefit of Gradle compared to Ant is that your build description is much smaller, as you
normally do not define targets and procedures. The liability is that you need to understand the
conventions used, otherwise really nothing works, and you need to known the built-in targets.

Another big advantage of Gradle is built-in dependency management, that is, Gradle can be told
which Java libraries to include in the classpath when compiling and running – these are then
automatically downloaded from maven repository (https://mvnrepository.com/).

Thus, it makes little sense to TDD a build description for Gradle, as I do in the FRS book, as
everything is declarative in the file.

Source code folder layout
Gradle assumes a standard layout of your folders containing production- and test code, similar to
this:

The root folder (here tdd-iteration-1) must contain the build description in a file named
build.gradle.

If you compare it to §6.3.8 and figure 6.1 in FRS, it is not that different, except gradle support
multiple languages, so any Java production source code must reside in src/main/java/(packagename)
while test code in src/test/java/(packagename).

Build.gradle
A build.gradle file for the PayStation (which works with Gradle 6.5) is shown below

Basically, it just states declaratively that this build description is for Java, that it shall pull libraries
from the JCenter repository, and that the source code depends upon three libraries, two for JUnit 5,
and one for Hamcrest. You find the exact text to paste into the ‘dependencies’ section of the
build.gradle by searching for libraries at mvnrepository.com. For instance, if you want to include
the Unirest Java library, which allows HTTP calls to webservers, I would search for it:

I then choose which version of the library I want, which provides the details needed:

Gradle targets
Gradle knows how to compile and test Java programs using standard targets. In daily
development I almost exclusively do test-driven development, so the command issued again and
again is: gradle test.

However, you can get the full (and very long) list of targets by invoking gradle tasks.

Integration into IntelliJ
IntelliJ is a powerful integrated development environment, which understands Gradle out of the
box. To open your project in IntelliJ, just ask it to open the root folder of your gradle project.

Next, IntelliJ will spend some time importing your project. After than you can run the test cases
from within IntelliJ.

