Mostly for the Students...

This is a book about designing and programming flexible and reliable software. The
big problem with a book about making software is that you do not learn to make
software—by reading a book. You learn it by reading about the techniques, concepts
and mind-sets that I present; apply them in practice, perhaps trying alternatives; and
reflect upon your experiences. This means you face a lot of challenging and fun
programming work at the computer! This is the best way to investigate a problem
and its potential solutions: programming is a software engineer’s laboratory where
great experiments are performed and new insights are gained.

I have tried to give the book both a practical as well as an theoretical and academic
flavor. Practical because all the techniques are presented based on concrete and plau-
sible (well, most of the time) requirements that you are likely to face if you are em-
ployed in the software industry. Practical because the solution that I choose works
well in practice even in large software projects and not just toy projects like the ones
I can squeeze down into this book. Practical because the techniques I present are
all ones that have been and are used in practical software development. Theoretical
and academic because I am not satisfied with the first solution that I can think of
and because I try hard to evaluate benefits and liabilities of all the possible solutions
that I can find so I can pick the best. In your design and programming try to do the
same: Practical because you will not make a living from making software that does
not work in practice; academic because you get a better pay-check if your software is
smarter than the competitors’.

Mostly for the Teachers...

This book has an ambitious goal: to provide the best learning context for a student to
become a good software engineer. Building flexible and reliable software is a major
challenge in itself even for seasoned developers. To a young student it is even more
challenging! First, many software engineering techniques are basically solutions to
problems that an inexperienced programmer has never had. For instance, why intro-
duce a design pattern to increase flexibility if the program will never be maintained
as is the case with most programming assignments in teaching? Second, real software

xxi

xxii

design and development require numerous techniques to be combined—picking the
right technique at the right time for the problem at hand. For instance, to do auto-
mated testing and test-driven development you need to decouple abstractions and
thus pick the right patterns—thus in practice, automated testing and design patterns
benefit from being combined.

This book sets out to lessen these problems facing our students. It does so by story
telling (?), by explaining the design and programming process, and by using projects
as a learning context. Many chapters in the book are telling the story of a company
developing software for parking lot pay stations and the students are invited to join
the development team. The software is continuously exposed to new requirements as
new customers buy variations of the system. This story thus sets a natural context for
students to understand why a given technique is required and why techniques must
be combined to overcome the challenges facing the developers. An agile and test-
driven approach is applied and space is devoted to explaining the programming and
design process in detail—because often the devil is in the detail. Finally, the projects
in the last part of the book define larger contexts, similar to real, industrial, develop-
ment, in which the students via a set of assignments apply and learn the techniques
of the book.

A Tour of the Book

The book is structured into nine parts—eight learning iterations, parts 1-8, and one
project part, part 9. The eight learning iterations each defines a “release” of knowl-
edge and skills that you can use right away in software development as well as use
as a stepping stone for the next learning iteration. An overview of the learning iter-
ations and their chapters is outlined in Figure 1. The diagram is organized having
introductory topics/chapters at the bottom and advanced topics/chapters at the top.
Chapters marked with thick borders cover core topics of the book and are generally
required to proceed. Chapters marked with a gray background cover material that
adds perspective, background, or reflections to the core topics. The black chapters
are the project chapters that define exercises.

For easy reference, an overview of the rhythm and principles of test-driven develop-
ment is printed as the first two pages, and an index of all design patterns at the last
page. In addition to a normal index, you will also find an index of sidebars and key
points at the end of the book.

Learning iteration 1 is primarily an overview and introduction of basic terminology
that are used in the book. Learning iterations 2 to 5 present the core practices, con-
cepts, tools and analytic skills for designing flexible and reliable software. These
iterations use a story telling approach as they unfold a story about a company that is
producing software for pay stations, a system that is facing new requirements as time
passes. Thus software development techniques are introduced as a response to real-
istic challenges. Learning iteration 6 is a collection of design patterns—that can now
be presented in a terse form due to the skills acquired in the previous iterations. The
learning focus of iteration 7 is frameworks which both introduce new terminology as
well as demonstrate all acquired skills on a much bigger example, MiniDraw. Learn-
ing iteration 8 covers two topics that are important for flexible and reliable software
development but nevertheless are relatively independent of the previous iterations.

Copyrighted Material

xxiii

Learning | Chapters
Iteration |
9 | 35. HotGammon Project 36. HotCiv Project
8 | 33. Config. 34. Systematic
| Management Testing
| - 31. Template 32. Framework
7 | 30. MiniDraw Method Theory
6 19 — 29. Design Pattern Catalogue: Facade, Decorator, Adapter, Builder,
| Command, Iterator, Proxy, Composite, Null Object, Observer, Model-View-Contr.
Pl 5 | 15. Roles and 16. Composition. 17. Multi-Dim. 18. Design
a | Responsibilities Design Princip. Variance Patterns Il
1|
4 11. State 12. Test Stubs 13. Abstract Lo PgtFern
S | Factory Fragility
T
a - -
8. Refactor and 9. Design 10. Coupling
F 3 | 7. Strategy Integration Patterns | Cohesion
|
0 |
n 2 | 4. Case 5. Test-Driven 6. Build
Development Management
1 | 1. Agile Dev. 2. Reliabilty and 3. Maintainability
| Processes Testing and Flexibility

Figure 1: Overview of learning iterations and chapters.

Part 9, Projects, defines two large project assignments. These projects are large sys-
tems that are developed through a set of assignments covering the learning objectives
of the book. Each project is structured into seven releases or iterations that roughly
match learning iteration 2 to 8 of the book. Thus by completing the exercises in, say,
project HotCiv’s iteration on frameworks you will practice the skills and learning ob-
jectives defined in the framework learning iteration of the book. If you complete most
or all iterations in a project you will end up with a reliable and usable implementa-
tion of a large and complex software system, complete with a graphical user interface.
The HotGammon project will even include an opponent artificial intelligence player.

Each learning iteration starts with an overview of its chapters, and in turn each chap-
ter follows a common layout:

o Learning Objectives state the learning contents of the chapter.

e Next comes a presentation and discussion of the new material usually ending
in a section that discusses benefits and liabilities of the approach.

Copyrighted Material

xxiv

o Summary of Key Concepts tries to sum up the main concepts, definitions, and
results of the chapter in a few words.

o Selected Solutions discusses exercises in the chapter’s main text if any.

o Review Questions presents a number of questions about the main learning con-
tents of the chapter. You can use these to test your knowledge of the topics.
Remember though that many of the learning objectives require you to program
and experiment at the computer to ensure that you experience a deep learning
process.

o Further Exercises presents additional, small, exercises to sharpen your skills.
Note, however, that the main body of exercises is defined in the projects in
part 9.

Some of the chapters, notably the short design pattern presentations in learning iter-
ation 6, A Design Pattern Catalogue, will leave out some of these subsections.

How to Use the Book

This book can be used in a number of ways. The book is written for courses with a
strong emphasis on practical software development with a substantial project work
element leading all the way to students designing and implementing their own frame-
works with several concrete instantiations. The book has been used in semester
length, quarter length, and short courses. Below I will outline variations of this theme
as well as alternative uses of the book.

Semester lengths project courses. Learning iterations 1-8 of the book are organized
to follow a logical path that demonstrates how all the many different development
techniques fit nicely together to allow students to build flexible frameworks and dis-
cuss them from both the theoretical as well as practical level. Each iteration roughly
correlates to two weeks of the course. Topics from iteration 8 need not be introduced
last but can more or less be introduced at any time. For instance, it may make sense
to introduce a software configuration management tool early to support team collab-
oration on source code development. The projects in part 9 follow the rhythm of the
book and students can start working on these as soon as the test-driven development
chapter has been introduced. Alternative projects can be defined, however, consult ?)
for some pitfalls to avoid.

Quarter lengths project courses. Here the basic organization of the book is still fol-
lowed but aspects must be left out or treated cursory. Chapters marked by a gray
background in Figure 1 are candidates. Depending on the entry level of the students,
parts of the Basic Terminology part can be cursory reading or introduced as part of a
topic in the later iterations—for instance introducing the notion of test cases as part
of demonstrating test-driven development, or just introduce maintainability with-
out going into its sub qualities. The build management topic can be skipped and
replaced by an introduction to integrated development environments or Ant scripts
can be supplied by the teacher, as it is possible to do the projects without doing the
build script exercises. The projects in the last part of the book work even in quarter
length courses, note however that this may require the teacher to supply additional

Copyrighted Material

XXV

code to lower the implementation burden. This is especially true for the MiniDraw
integration aspect of the framework iteration.

Short courses. Two-three day courses for professional software developers can be or-
ganized as full day seminars alternating between presentations of test-driven devel-
opment, design patterns, variability management, compositional designs, and frame-
works, and hands-on sessions working on the pay station case. Depending on the
orientation of your course, topics are cursory or optional.

Design pattern courses. Here you may skip the test-driven development aspects all
together. Of course this means skipping the specific chapter in part 2, the test stub
chapter in part 4, as well as skipping the construction focused sections in the chapters
in parts 3 and 4. I advise to spend time on the theory of roles and compositional
design in part 5. Optionally part 7 may be skipped altogether and time spent on
covering all the patterns present in the catalogue in part 6. The patterns may be
supplemented by chapters from other pattern books.

Software engineering courses. Here less emphasis can be put on the pattern cata-
logue in part 6 and frameworks in part 7 and instead go into more details with tools
and techniques for systematic testing, build-management, and configuration man-
agement.

Framework oriented courses. Here emphasis is put on the initial patterns from
parts 3 and 4 and on the theory in part 5. Only a few of the patterns from part 6
are presented, primarily as examples of compositional design and for understanding
the framework case, MiniDraw;, in part 7.

Prerequisites

I expect you to be a programmer that has a working experience with Java, C#, or sim-
ilar modern object-oriented programming languages. I expect that you understand
basic object oriented concepts and can design small object-oriented systems and make
them “work”. I also expect you to be able to read and draw UML class and sequence
diagrams.

Conventions

I have used a number of typographic conventions in this book to highlight various
aspects. Generally definitions and principles are typeset in their own gray box for easy
visual reference. I use side bars to present additional material such as war stories,
installation notes, etc. The design patterns I present are all summarized in a single
page side bar (a pattern box)—remember that a more thorough analysis of the pattern
can be found in the text.

I use type faces to distinguish class names, role names, and other special meaning
words from the main text.

o ClassName and methodName are used for programming language class and
method names.

Copyrighted Material

XXvi

PATTERNNAME is used for names of design patterns.
e packagename is used for packages and paths.

task is used for Ant task names.

roleName is used for the names of roles in designs and design patterns. Bold is
also used when new terms are introduced in the text.

Web Resources

The book’s Web site, http:/ /www.baerbak.com, contains source code for all examples
and projects in the book, installation guides for tools, as well as additional resources.
Source code for all chapters, examples, exercises, and projects in the book are avail-
able in a single zip file for download. To locate the proper file within this zip file,
most listings in chapters are headed by path and filename, like

Fragment: chapter/tdd/iteration-0/PayStation.java
public interface PayStation {

That is, PayStation.java is located in folder chapter/tdd/iteration-0 in the zipfile.
Several exercises are also marked by a folder location, like

Exercise 0.1. Source code directory:
exercise/iterator/chess

Permissions and Copyrights

The short formulation of the TDD principles in the book and on the inner cover are
reproduced by permission of Pearson Education, Inc., from Beck, TEST DRIVEN DE-
VELOPMENT:BY EXAMPLE, (© 2003 Pearson Education, Inc and Kent Beck. The his-
torical account of design patterns in Chapter 9 was first written by Morten Lindholm
and published in Computer Music Journal 29:3 and is reprinted by permission of MIT
Press. IEEE term definitions reprinted by permission of Dansk Standard. The intent
section of the short design pattern overviews in the pattern side bars as well as the
formulation of the program to an interface and favor object composition over class inheri-
tance are reprinted by permission of Pearson Education, Inc., from Gamma/Helm/John-
son/Vlissides, DESIGN PATTERNS: ELEMENTS OF REUSABLE OBJECT-ORIENTED
DESIGN. Other copyrighted material is reproduced as fair use by citing the authors.

Java technology and Java are registered trademarks of Sun Microsystems, Inc. Windows
is a registered trademark of Microsoft Corporation in the United States and other
countries. UNIX is a registered trademark in the United States and other countries,
exclusively licensed through X/Open Company, Ltd. All other product names men-
tioned throughout the book are trademarks of their respective owners.

Copyrighted Material

xxvii

The Inkscape image on page 337 was made by Konstantin Rotkevich and is copyleft
under the Free Art Licence. Michael Margold at SoftCollection kindly gave permis-
sion to use their Java source code for the LCD display code used in the pay station
graphical user interface first introduced in the Facade chapter. Karl Hornell gave per-
mission to copy the IceBlox game from his web site www. javaonthebrain.com.
The graphical tile set used for drawing the map in HotCiv is a copy of the neotrident
tile set for FreeCiv 2.1.0, released under the GNU public license.

Acknowledgments

The following students have made valuable contributions by pointing out problems
in the text or in the exercises: Anders Breindahl, Carsten Moberg Hammer, Emil
Nauerby, Jens Peter S. Aggerholm, Jens Bennedsen, Hans Kolind Pedersen, Kristian
Ellebeek Kjeer, Karsten Noe, Kenneth Sejdenfaden Begh, Mads Schaarup Andersen,
Mark Sjener Rasmussen, Marianne Dammand Iversen, Mark Surrow, Martin Norre
Christensen, Michael Dahl, Michael Lind Mortensen, Mikael Kragbaek Damborg Jen-
sen, Mikkel Kjeldsen, Morten Wegelbye Nissen, Ole Rasmussen, Peter Urbak, Ras-
mus Osterlund Feldthaus Hansen, and Seren Kaa. Henrik Agerskov drew the initial
graphics for the Backgammon graphical user interface.

A special thanks to Finn Rosenbech Jensen for some good discussions, much en-
thusiasm, and valuable comments. I would like to thank Morten Lindholm Nielsen
that contributed to Chapter 9. Jens Bennedsen, Jiirgen Borstler, Erik Ernst, Edward
F. Gehringer, Klaus Marius Hansen, John Impagliazzo, Michael Kolling, Andrew
McGettrick, and Cyndi Rader provided valuable reviews and comments throughout
the process. A special thanks to Michael E. Caspersen for getting CRC Press inter-
ested in my book. I would also like to thank Alan Apt at CRC Press for being an
enthusiastic editor, and to Amy Blalock and Michele Dimont for helping me through
the maze of tasks associated with writing a book. My collegues at Department of
Computer Science, Aarhus University, I thank for an inspiring work environment,
and the opportunity to spend part of my time writing this book.

Finally, I dedicate this book to my wife, Susanne, and my children, Mikkel, Magnus,
and Mathilde. Home is not a place but the love of your family. ..

Copyrighted Material

