
Chapter

16
Compositional Design Principles

Learning Objectives

In this chapter, I will more formally introduce the three principles that form the ®-¬-
 process. The learning focus is understanding how these principles manifest them-
selves in our design and in our concrete implementation, and how they work in favor
of increasing the maintainability and flexibility qualities in our software.

16.1 The Three Principles

The original design pattern book (Gamma et al. 1995) is organized as a catalogue of
23 design patterns. It provides, however, also an introduction that discusses various
aspects of writing reusable and flexible software. In this introduction they state some
principles for reusable object-oriented design.

Principles for Flexible Design:

¬ Program to an interface, not an implementation.

 Favor object composition over class inheritance.

® Consider what should be variable in your design.

(or: Encapsulate the behavior that varies.)

The authors themselves state the first two directly as principles (p. 18 and 20) whereas
the third principle is mentioned as part of the process of selecting a design pattern
(p. 29) and thus not given the status of a principle. Shalloway and Trott (2004) later
highlight the statement Consider what should be variable as a third principle. Grand
(1998) restated the two first principles as fundamental patterns, named INTERFACE and
DELEGATION.

247

248 z CHAPTER 16 Compositional Design Principles

These three principles work together nicely and form the mindset that defines the
structure and responsibility distribution that is at the core of most design patterns.
You have already seen these three principles in action many times. They are the ®-
¬- process that I have been using over and over again in many of the preceding
chapters.

® I identified some behavior that
was likely to change. . .

= ® Consider what should be variable
in your design.

¬ I stated a well defined respon-
sibility that covers this behavior
and expressed it in an interface. . .

= ¬ Program to an interface, not an im-
plementation.

 Instead of implementing the be-
havior ourselves I delegated to
an object implementing the inter-
face. . .

= Favor object composition over class
inheritance.

16.2 First Principle

¬ Program to an interface, not an implementation.

Client «interface»
Service

A central idea in modern software design is abstraction. There are aspects that you
want to consider and a lot of details that you do not wish to be bothered with: details
are abstracted away. We humans have limited memory capabilities and we must thus
carefully select just those aspects that are relevant and not overburden ourselves with
those that are not.

In object-oriented languages, the class is a central building block that encapsulates
a lot of irrelevant implementation details while only exposing a small set of public
methods. The methods abstract away the implementation details like data structures
and algorithms.

Encapsulation and abstraction lead to a powerful mindset for programming: that of
a contract between a user of functionality and a provider of functionality. I will use the
term client for the user class which is common for descriptions of design patterns—do
not confuse it with the “client” term used in internet and distributed computing. The
providing class I will term the service. Thus there exists a contract between the client
(“I agree to call your method with the proper parameters as you have specified. . . ”) and the
server (“if you agree to provide the behavior you have guaranteed”).

The question is then whether the class construct is the best way to define a contract
between a server and its client. In many cases, the answer is “no!” It is better to
program to an interface for the following reasons:

Copyrighted Material

First Principle z 249

Clients are free to use any service provider class. If I couple the client to concrete
or abstract classes I have severely delimited the set of objects that can be used by
the client: an object used by the client has to be a subclass! Thus the client has high
coupling to a specific class hierarchy.

Consider the two situations a) and b) in Figure 16.1 that reflect a development over
time. In situation a) the developers have applied the program to an interface principle

Client «interface»
Service

AbstractService

ConcreteServiceA ConcreteServiceB

a)

b)

Client «interface»
Service

AbstractService

ConcreteServiceA ConcreteServiceB

AnotherService

ConcreteServiceC

Figure 16.1: a) Original design b) Later design.

and provided a hierarchy of classes that the client uses. Later, however, it becomes
beneficial to let the client collaborate with an instance of AnotherService. The inter-
face decouples the client from the concrete implementation hierarchy.

Exercise 16.1: Describe what would happen if in situation a) the client
was directly coupled to the AbstractService and you had to make the
ConcreteServiceC. How would you do that?

Interfaces allow more fine-grained behavioral abstractions. By nature, a class
must address all aspects of the concept that it is intended to represent. Interfaces,

Copyrighted Material

250 z CHAPTER 16 Compositional Design Principles

however, are not coupled to concepts but only to behavioral aspects. Thus they can
express much more fine-grained aspects. The classic example it the Comparable inter-
face, that only expresses the ability of an object to compare itself to another. Another
example is the SelectionHandler interface, explained in Section 15.7.2, that showed
how introducing fine-grained abstractions can lead to reuse.

Interfaces better express roles. The above discussion can be rephrased in terms of
the role concept. Better designs result when you think of the role a given server object
will play for a client object. This mind set leads to making interfaces more focused
and thus smaller.

Again, consider the Comparable interface in the java collection library. To the sorting
algorithms, the only interesting aspect is that the objects can play the comparable
role—just as a Hamlet play is only interested in a person’s ability to play Hamlet. All
other aspects are irrelevant.

Classes define implementation as well as interface. Imagine that the client does
not program to an interface, but to a concrete service class. As a service class defines
implementation, there is a risk that the client class will become coupled to its con-
crete behavior. The obvious example is accidentally accessing public instance vari-
ables which creates high coupling. A more subtle coupling may appear if the service
implementation actually deviates from the intended contract as stated by class and
method comments. Some examples is for methods to have undocumented side ef-
fects, or even have defects. In that case the client code may drift into assuming the
side effects, or be coded to circumvent the defective behavior. Now the coupling has
become tight between the two as another service implementation cannot be substi-
tuted.

16.3 Second Principle

 Favor object composition over class inheritance.

This statement deals with the two fundamental ways of reusing behavior in object-
oriented software as outlined in Figure 16.2.

ExistingService

NewService

a)

ExistingService1

NewService

ExistingService2

b)

Figure 16.2: Class inheritance (a) and object composition (b).

Class inheritance is the mechanism whereby I can take an existing class that has some
desirable behavior and subclass it to change and add behavior. That is, I get complex

Copyrighted Material

Second Principle z 251

behavior by reusing the behavior of the superclass. Object composition is, in contrast,
the mechanism whereby I achieve complex behavior by composing the behavior of a
set of objects.

You saw these two techniques discussed in depth in Chapter 7, Deriving Strategy Pat-
tern, and in many of the following chapters concerning design patterns. The poly-
morphic proposal suggested using class inheritance to introduce a new rate structure
algorithm; the compositional proposal suggested using object compositions to do the
same.

Class inheritance has a number of advantages. It is straightforward and supported
directly by the programming language. The language support ensures that you write
very little extra code in order to reuse the behavior of the superclass. Inheritance,
however, also comes with a number of liabilities that must be considered.

Encapsulation. It is a fact that “inheritance breaks encapsulation” (Snyder 1986). A
subclass has access to instance variables, data structures, and methods in all classes
up the superclass chain (unless declared private.) Thus superclass(es) expose im-
plementation details to be exploited in the subclass: the coupling is high indeed.
This has the consequence that implementation changes in a superclass are costly as
all subclasses have to be inspected, potentially refactored, and tested to avoid defects.

Object composition, in contrast, depends upon objects interacting via their interfaces
and encapsulation is ensured: objects collaborating via the interfaces do not depend
on instance variables and implementation details. The coupling is lower and each ab-
straction may be modified without affecting the others (unless the contract/interface
is changed of course).

You can only add responsibilities, not remove them. Inheriting from a superclass
means “you buy the full package.” You get all methods and all data structures when
you subclass, even if they are unusable or directly in conflict with the responsibili-
ties defined by the subclass. You may override a method to do nothing in order to
remove its behavior, or indicate that it is no longer a valid method to invoke, usu-
ally by throwing an exception like UnsupportedOperationException. Subclasses can
only add, never remove methods and data structures inherited. A classic example
is java.util.Stack. A stack, by definition, only supports adding and removing ele-
ments by push() and pop. However, to reuse the element storage implementation,
the developers have made Stack a subclass of Vector, which is a linear list collection.
That is, an instance of stack also allows elements to be inserted at a specific position,
stack.add(7, item);, which is forbidden by a stack’s contract!

Composing behavior, in contrast, leads to more fine-grained abstractions. Each ab-
straction can be highly focused on a single task. Thus cohesion is high as there is a
clear division of responsibilities.

Exercise 16.2: Apply the principle to the stack example above so
clients cannot invoke methods that are not part of a stack’s contract but
the stack abstract still reuses the vector’s implementation.

Copyrighted Material

252 z CHAPTER 16 Compositional Design Principles

Compile-time versus run-time binding. Class inheritance defines a compile-time
coupling between a subclass and its superclass. Once an object of this class has been
instantiated its behavior is defined once and for all throughout its lifetime. In con-
trast, an object that provides behavior by delegating partial behavior to delegate ob-
jects can change behavior over its lifetime, simply by changing the set of delegate
objects it uses. For instance, you can reconfigure a Alphatown pay station to become
a Betatown pay station even at run-time simply by changing what rate strategy and
what factory it uses.

Exercise 16.3: Extend the pay station so it can be reconfigured at run-
time by providing it with a new factory object. You will have to intro-
duce a new method in the PayStation interface, for instance

public void reconf igure (PayStat ionFactory f a c t o r y) ;

Recurring modifications in the class hierarchy. A force I have often seen in practice
is that classes in a hierarchy have a tendency to be modified often, as new subclasses
are added. As an example, consider a service that fulfills its contract nicely using a
simple ArrayList data structure, see a) in Figure 16.3. Later I need a better perform-
ing service implementation but if I simply subclass the original service class I have
to override all methods to use a better performing data structure, and instantiated
objects will contain both structures. The logical consequence is to modify the class
hierarchy by adding a common, abstract, class, as shown in pane b) of the figure.
While the modification is sensible, it does mean that three classes are now modified

Client

doThings()

ArrayList<Item>

Service

Client
doThings()

AbstractService

doThings()

ArrayList<Item>

Service

doThings()

TreeMap<K,Item>

NewService

a) b)

Figure 16.3: Modifications in hierarchy.

and have to be reviewed and tested to ensure the former reliability. Often, each new
subclass added provides opportunities for reworking the class hierarchy and as a
consequence the stability quality suffers. In Chapter 11, Deriving State Pattern, I dis-
cussed the tendency for subclass specific behavior “bubbling” up the hierarchy to
end in the abstract superclass that becomes bigger and less cohesive over time.

In a compositional design, the array list based and tree map implementations would
be separate implementations without overlap. However, this benefit may turn into
a liability if the AbstractService can make concrete implementations of many of the
methods. In that case, a compositional proposal would end up with duplicated code

Copyrighted Material

Second Principle z 253

or be required to do further decomposition to avoid it. Thus, in this case one should
carefully consider benefits and liabilities before committing to either solution. This
particular case is explored in the exercise below.

Exercise 16.4: To make Figure 16.3 concrete, consider that the service is
a list storing integers. A demonstration implementation may look like

Fragment: exercise/compositional-principles/InitialImplementation.java

c l a s s I n t e g e r L i s t {
private i n t contents [] ; i n t index ;
public I n t e g e r L i s t () { contents = new i n t [3] ; index = 0 ; }
public i n t s i z e () { return index ; }
public boolean add (i n t e) {

contents [index ++] = e ;
return true ;

}
public i n t get (i n t p o s i t i o n) { return contents [p o s i t i o n] ; }
/ / f o l l o w i n g methods a r e d a t a s t r u c t u r e i n d e p e n d e n t
public boolean isEmpty () { return s i z e () == 0 ; }
public S t r i n g contentsAsStr ing () {

S t r i n g r e s u l t = " [" ;
for (i n t i = 0 ; i < s i z e () −1; i ++) {

r e s u l t += get (i)+ " , " ;
}
return r e s u l t + get (s i z e ()−1)+ "] " ;

}
}

Note that the two last methods are implemented using only methods in
the class’ interface, thus they can be implemented once and for all in an
abstract class.
Take the above source code and implement two variants of an integer
list: one in which you subclass and one in which you compose behavior.
Evaluate benefits and liabilities. How can you make a compositional ap-
proach that has no code duplication and does not use an abstract class?

Separate testing. Objects that handle a single task with a clearly defined respon-
sibility may often be tested isolated from the more complex behavioral abstraction
they are part of. This works in favor of higher reliability. Dependencies to depended-
on units may be handled by test stubs. The separate testing of rate strategies, outlined
in Section 8.1.5, is an example showing this.

Increased possibility of reuse. Small abstractions are easier to reuse as they (usu-
ally) have fewer dependencies and comes with less behavior that may not be suitable
in a reusing context. The selection handler abstraction in MiniDraw, described in the
previous chapter, is an example of this.

Increased number of objects, classes, and interfaces. Having two, three, or sev-
eral objects doing complex behavior instead of a single object doing it all by itself
naturally leads to an increase in the number of objects existing at run-time; and an
increase in the number of classes and interfaces I as a developer have to overview at

Copyrighted Material

254 z CHAPTER 16 Compositional Design Principles

compile-time. If I cannot maintain this overview or I do not understand the interac-
tions then defects will result. It is therefore vital that developers do have a roadmap
to this web of objects and interfaces in order to overview and maintain the code. How
to maintain this overview is the topic of Chapter 18.

Delegation requires more boilerplate code. A final liability is that delegation re-
quires more “boilerplate” code. If I inherit a superclass, you only have to write
Class B extends A and all methods are automatically available to any B object with-
out further typing. In a compositional design, I have potentially a lot of typing to
do: create an object reference to A, and type in all “reused” methods and write the
delegation code:

void foo () { a . foo () ; }
i n t bar () { return a . bar () ; }

16.4 Third Principle

® Consider what should be variable in your design.

This is the most vague of the three principles (perhaps the reason that Gamma et al.
did not themselves state it as a principle). Instead of considering what might force a
design change you must focus on the aspects that you want to vary—and then design
your software in such a way that it can vary without changing the design. This is why
it could be reformulated as Encapsulate what varies in your design: use the first two
principles to express the variability as an interface, and then delegate to an object
implementing it.

This principle is a recurring theme of many design patterns: some aspect is identified
as the variable (like “business rule/algorithm” in STRATEGY) and the pattern pro-
vides a design that allows this aspect to vary without changes to the design but by
changes in the configuration of objects collaborating.

16.5 The Principles in Action

The principles can be used by themselves but as I have pointed out throughout this
book they often work nicely in concert: the ®-¬- process.

®–Consider what should be variable. I identify some behavior in an abstraction that
must be variable, perhaps across product lines (Alphatown, Betatown, etc.), perhaps
across computing environments (Oracle database, MySQL database, etc.), perhaps
across development situations (with and without hardware sensors attached, under
and outside testing control, etc.) as shown in Figure 16.4.

¬–Program to an interface, not an implementation. I express that responsibility that
must be variable in a new interface, see Figure 16.5.

Copyrighted Material

Summary of Key Concepts z 255

-- Responsibilities
responsibility 1
responsibility 2
responsibility 3

Abstraction

-- Responsibilities
responsibility 1
(responsibility 2)
responsibility 3

Abstraction

-- Responsibilities
responsibility 2

Variability

a) b)

Figure 16.4: A responsibility (a) is factored out (b).

-- Responsibilities
responsibility 1
(responsibility 2)
responsibility 3

Abstraction

-- Responsibilities
responsibility 2

«interface»
Variability

c)

Figure 16.5: Expressing it as an interface (c).

–Favor object composition over class inheritance. And I define the full, complex,
behavior by letting the client delegate behavior to the subordinate object: let someone
else do the dirty job, as seen in Figure 16.6.

Remember, however, that the ®-¬- is not a process to use mechanically. As was
apparent in the discussion of the abstract factory you have to carefully evaluate your
options to achieve a good design with low coupling and high cohesion. Note also
that they are principles, not laws. Using these principles blindly on any problem you
encounter may “over-engineer” your software. If you are not in a position where you
can utilize the benefits then there is little point in applying the principles. Remember
the TDD value: Simplicity: You should build or refactor for flexibility when need
arises, not in anticipation of a need. Often when I have tried to build in flexibility in
anticipation of a need, I have found myself guessing wrong and the code serving the
flexibility actually gets in the way of a better solution.

16.6 Summary of Key Concepts

Three principles are central for designing compositional designs. These are:

Principles for Flexible Design:

¬ Program to an interface, not an implementation.

 Favor object composition over class inheritance.

® Consider what should be variable in your design.

(or: Encapsulate the behavior that varies.)

Copyrighted Material

256 z CHAPTER 16 Compositional Design Principles

-- Responsibilities
responsibility 1
(responsibility 2)
responsibility 3

Abstraction

-- Responsibilities
responsibility 2

«interface»
Variability

d)

Variant1

Variant2

Figure 16.6: Composing full behavior by delegating (d).

Generally, applying these patterns makes your design more flexible and maintain-
able as abstractions are more loosely coupled (first principle), bindings are run-time
(second principle), and abstractions tend to become smaller and more cohesive. The
third principle is a keystone in many design patterns that strive to handle variability
by encapsulation, using the first two principles.

16.7 Selected Solutions

Discussion of Exercise 16.1:

One possible way would be to create a subclass AbstractServiceD and let it create an
instance of AbstractServiceC. All methods in AbstractServiceD (which are the ones
the client invokes) are overridden to call appropriate methods in AbstractServiceC.
However, the construction is odd, as AbstractServiceD of course inherits algorithms
and data structures from AbstractService that are not used at all.

This proposal resembles the ADAPTER pattern, however adapter is fully composi-
tional.

Discussion of Exercise 16.4:

You can find solutions to the exercise in folder solution/compositional-principles.
Basically, you can do the same thing with a compositional design as with an abstract
class: you factor out common code into a special role, CommonCollectionResponsibil-
ities, implement it, and delegate from the implementations of the integer list. How-
ever, due to the delegation code and extra interfaces, the implementation becomes
longer (100 lines of code versus 85) and more complex.

16.8 Review Questions

What are the three principles of flexible software design? How are they formulated?
Describe and argue for their benefits and liabilities.

How do these principles relate to patterns like STRATEGY, ABSTRACT FACTORY and
others that you have come across?

What are the alternative implementations that arise when these principles are not
followed?

Copyrighted Material

Further Exercises z 257

16.9 Further Exercises

Exercise 16.5:

Many introductory books on object-oriented programming demonstrate generaliza-
tion/specialization hierarchies and inheritance by a classification hierarchy rooted in
the concept person as shown in Figure 16.7. For instance a person can be a teacher or a
student and by inheriting from the Person class all methods are inherited “for free”:
getName(), getAge(), etc.

firstName()
getAge()

Person

getSalary()

Teacher

getEnrollYear()

Student

Figure 16.7: A polymorphic design for teachers and students.

This design may suffice for simple systems but there are several problems with this
design that you should study in this exercise. You should analyze the problems stated
in the context of an object-oriented university management system that handles all
the university’s associated persons (that is both teachers and students).

Life-cycle problem. Describe how to handle that a student graduates and gets em-
ployed as a teacher?

Context problem. Describe how the system must handle that a teacher enrolls as
student on a course? How must the above class diagram be changed in order to fully
model that a person can be both a student as well as a teacher?

Consistency problem. Describe how the system must handle a situation where a
teacher changes his name while enrolled in a course.

Based on your understanding of roles and by applying the principles for flexible de-
sign propose a new design that better handles these problems. Note: It is not so much
the ®-¬- process that should be used here as it is the individual principles in their
own right.

As a concrete step, consider the following code fragment that describes the consis-
tency problem above:

Teacher t = [get teacher ‘ ‘ Henrik Christensen ’ ’]
Student s = [get student ‘ ‘ Henrik Christensen ’ ’]

a s s e r t E q u a l s (‘ ‘ Henrik ’ ’ , t . f irstName ()) ;
a s s e r t E q u a l s (‘ ‘ Henrik ’ ’ , s . f irstName ()) ;

Copyrighted Material

258 z CHAPTER 16 Compositional Design Principles

[Person Henrik renamed to Thomas]

a s s e r t E q u a l s (‘ ‘ Thomas ’ ’ , t . f irstName ()) ;
a s s e r t E q u a l s (‘ ‘ Thomas ’ ’ , s . f irstName ()) ;

The point is that the name change should be a single operation at the person level
(as name changes conceptually has nothing to do with neither Henrik’s teacher nor
student association).

How would you make the person-teacher-student design so that this test case passes
without making changes to multiple objects?

Copyrighted Material

